High Pressure Phase Transitions in Yttria, Y2O3
نویسندگان
چکیده
منابع مشابه
Role of relativity in high-pressure phase transitions of thallium
We demonstrate the relativistic effects in high-pressure phase transitions of heavy element thallium. The known first phase transition from h.c.p. to f.c.c. is initially investigated by various relativistic levels and exchange-correlation functionals as implemented in FPLO method, as well as scalar relativistic scheme within PAW formalism. The electronic structure calculations are interpreted f...
متن کاملHigh-pressure phase transitions in ordered and disordered Bi2Te2Se.
We report studies of pressure-induced phase transitions of ordered and disordered ternary tetradymite-like Bi2Te2Se by synchrotron powder X-ray diffraction (PXRD) in diamond anvil cells (DACs) for pressures up to 59 and 49 GPa, respectively. The first sample (SB) was prepared from a single crystal with ordered Se/Te sites while the second sample (Q) was prepared from a quenched melt resulting i...
متن کاملHigh-pressure phase transitions in rubidium and caesium hydroxides.
A computational investigation of the high-pressure phase sequence of the heaviest alkali hydroxides, RbOH and CsOH, shows that the phase diagram of both compounds is richer than hitherto thought. First-principles calculations suggest, based on energetics and comparisons to experimental diffraction and spectroscopy signatures, that the high-pressure phase RbOH-VI, stable above 6 GPa in experimen...
متن کاملStructural phase transitions in Bi2Se3 under high pressure
Raman spectroscopy and angle dispersive X-ray diffraction (XRD) experiments of bismuth selenide (Bi2Se3) have been carried out to pressures of 35.6 and 81.2 GPa, respectively, to explore its pressure-induced phase transformation. The experiments indicate that a progressive structural evolution occurs from an ambient rhombohedra phase (Space group (SG): R-3m) to monoclinic phase (SG: C2/m) and e...
متن کاملSize-dependent amorphization of nanoscale Y2O3 at high pressure.
Y2O3 with particle sizes ranging from 5 nm to 1 μm were studied at high pressure using x-ray diffraction and Raman spectroscopy techniques. Nanometer-sized Y2O3 particles are shown to be more stable than their bulk counterparts, and a grain size-dependent crystalline-amorphous transition was discovered in these materials. High-energy atomic pair distribution function measurements reveal that t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2012
ISSN: 1742-6596
DOI: 10.1088/1742-6596/377/1/012036